Review: Derivative Definition - 10/19/16

1 Definition of Derivative

Definition 1.0.1 The derivative of a function f is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Some alternate notations:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(a)=D f(x)=D_{x} f(x) .
$$

When we want to take the derivative at a point, we can write it as $f^{\prime}(a)$ or as $\left.\frac{d y}{d x}\right|_{x=a}$.

2 Sketching the Derivative

Example 2.0.2 Let $f(x)=x^{2}$. What is $\frac{d}{d x} f(x)$? We have $\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$ $=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0} 2 x+h=2 x$. Below, the red line is the original function, and the blue is the derivative.

Example 2.0.3 Sketch out the derivative of the following graph:

The slope of the tangent line is positive where the graph is increasing, negative where the graph is decreasing, and zero where it changes direction. If we draw a graph that has those characteristics, we get:

Let's see if what we get algebraically matches up with our picture. The equation of the original function is $f(x)=x^{3}-x$. To find the derivative, we take

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-(x+h)\right]-\left[x^{3}-x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x-h-x^{3}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1=3 x^{2}-1
\end{aligned}
$$

But this is exactly the graph that we got in the picture!

3 Differentiability

Definition 3.0.4 A function f is differentiable at a if $f^{\prime}(a)$ exists.
Theorem 3.0.5 If f is differentiable at a, then f is continuous at a.
Example 3.0.6 Let $f(x)=\sqrt{x}$. Is f continuous at 0? Yes it is: the limit as x goes to 0 is 0 . Is f differentiable at 0? We need to check if it has a derivative:

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-\sqrt{0}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{h}}{h} \cdot \frac{\sqrt{h}}{\sqrt{h}} \\
& =\lim _{h \rightarrow 0} \frac{h}{h \sqrt{h}} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{h}}
\end{aligned}
$$

The limit of this is infinity. It does not make sense to have a function where if I plug in 0, I get out infinity, so f is not differentiable at 0 .

This means that if f is continuous at a, it might be differentiable at a, or it might not be. If f is discontinuous at a, it is definitely NOT differentiable at a.

Example 3.0.7 Let $g(x)=|x|$. Is g differentiable at 0? We have $g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=$ $\lim _{h \rightarrow 0} \frac{|h|}{h}$. We want to know if this exists. Let's take the left and right hand limits. For the right hand limit, our h values will be positive as we're approaching 0, so we can take out the absolute value: $\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1$. For the left hand limit, our h values will be negative, so when I take the absolute value, I will have - h, since the minus will cancel the fact that h is negative to give me a positive number: $\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1$. Do the left and right hand limits equal one another? No, so the limit does not exist. That means that g is not differentiable at 0 .

In summary, we've seen three ways in which a function f is not differentiable at a point a :
(a) f has a kink at a. (this is where the limit does not exist).
(b) f is discontinuous at a.
(c) f has a vertical tangent line at a. (this happened with \sqrt{x})

(a) A corner

(b) A discontinuity

(c) A vertical tangent

Practice Problems

1. Let $f(x)=\frac{3}{x}$. What is $f^{\prime}(x)$?
2. Let $g(x)=x^{2}+2$. Is $g(x)$ differentiable?
3. Let $k(x)=\frac{1}{x^{2}}$. If $k(x)$ differentiable at 1 ? At 0 ?
4. Sketch the derivative of the following graph:

Solutions

1.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{3}{x+h}-\frac{3}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3 x-3(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-3 h}{h(x(x+h))} \\
& \lim _{h \rightarrow 0} \frac{-3}{x^{2}+x h}=\frac{-3}{x^{2}}
\end{aligned}
$$

2. To do this, we need to find the derivative of g to see if it exists:

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2-\left(x^{2}+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2-x^{2}-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h=2 x
\end{aligned}
$$

Since $2 x$ exists for all x, then the derivative of g exists everywhere, so g is differentiable.
3. To see if k is differentiable at 1 , we have to see if $k^{\prime}(1)$ exists:

$$
\begin{aligned}
k^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(1+h)^{2}}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-(1+h)^{2}}{h(1+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{1-1-2 h-h^{2}}{h(1+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{h(-2-h)}{h(1+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2-h}{(1+h)^{2}}=-2
\end{aligned}
$$

Since the derivative exists, then k is differentiable at 1 . Not that $k(x)$ is not continuous at 0 (since 0 is not in the domain), so it is not differentiable at 0 .
4. The red line is the function and the blue line is the derivative.

